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Relaxation of stationary states on a quantum
computer yields a unique spectroscopic fingerprint
of the computer’s noise
Scott E. Smart1, Zixuan Hu2, Sabre Kais2 & David A. Mazziotti 1✉

Quantum computing has the potential to revolutionize computing, but its significant sensitivity

to noise requires sophisticated error correction and mitigation. Traditionally, noise on the

quantum device is characterized directly through qubit and gate measurements, but this

approach has drawbacks in that it does not adequately capture the effect of noise on realistic

multi-qubit applications. In this paper, we simulate the relaxation of stationary quantum states

on a quantum computer to obtain a unique spectroscopic fingerprint of the computer’s noise.

In contrast to traditional approaches, we obtain the frequency profile of the noise as it is

experienced by the simulated stationary quantum states. Data from multiple superconducting-

qubit IBM processors show that noise generates a bath within the simulation that exhibits

both colored noise and non-Markovian behavior. Our results provide a direction for noise

mitigation but also suggest how to use noise for quantum simulations of open systems.
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Quantum computing, as conceived by Feynman1, has the
potential to revolutionize computing for certain classes of
problems with exponential scaling in the physical and

social sciences and engineering2–10. Central to the quantum
computing paradigm is the quantum process of entanglement by
which a pure-state quantum system develops a probability dis-
tribution over multiple classical outcomes. Entanglement allows
us to process and store exponentially more information than a
classical computer. This potential capability and its advantages,
however, come with a significant sensitivity to noise6,11–13 that
introduces errors that degrade performance, especially on
current-to-near-term quantum computers. Significant advances
have been made in the past decade in error correction and
mitigation14–19, but further advances are needed to not only
understand noise but also control noise for its mitigation or
exploitation.

In quantum mechanics, a closed system which is in a stationary
state will remain in that state for all time. If, however, the closed
quantum system is opened to an environment, also referred to as a
bath, then the system becomes an open-quantum system, and a
stationary state of that system will potentially become time-
dependent and non-stationary11. The precise time dependence of
the open quantum system depends upon the nature of the bath. If
the relaxation of the bath is fast relative to the dynamics of the
system, then the quantum dynamics is purely dissipative and
described as Markovian, but if the dynamics of the bath and system
are on the same timescale, then the dynamics causes energy to be
exchanged both to and from the bath and is described as non-
Markovian11,13,20. In non-Markovian dynamics the more complex
interaction between the system and bath causes the system to
develop a memory of its state as a function of time.

We can broadly characterize noise or the effects of noise
through spectroscopic or tomographic techniques. In the context
of quantum computing, characterization of the bath, which is
commonly assumed to be Markovian, gives a basic assessment of
the qubit and gate performance. While quantum process tomo-
graphic techniques can be used21–24, they are costly and poten-
tially unreliable for realistic measurement, and other alternatives
such as randomized benchmarking or quantum gate set tomo-
graphy have emerged as more robust tools25–27. Non-Markovian
behavior is present in a variety of systems, but is generally more
challenging to characterize28,29. Efficient characterization of an
underlying interaction is also possible for one or two-qubit
systems30,31. In the frame of a simulated quantum system,
however, we are not usually concerned with the characterization
of the device, but the bath in relation to the simulated system.

In this paper, we simulate stationary states on a quantum
computer to obtain a unique spectroscopic fingerprint of the
computer’s noise. If a quantum system in a stationary state is
simulated on an ideal quantum computer, the quantum system
will remain in that stationary state for all time. However, if the
same system is simulated on a noisy intermediate-scale quantum
(NISQ) computer, the noise causes the simulated state to become
non-stationary. The resulting time dependence in the frame of the
simulation provides us with a frequency profile of the noise as
it is experienced by the simulated stationary quantum state.
Knowledge of the bath in the frame of the simulated system can
potentially be utilized in the simulation of other noisy quantum
systems or the design of better algorithms for quantum
simulations32,33. Computations are performed on multiple
superconducting-qubit IBM quantum computers. We find that
each quantum computer has a unique spectroscopic signature for
a given simulation of stationary states. The noise generates an
effective bath that exhibits both colored noise and non-
Markovian behavior11,13,20. Characterization of the bath pro-
vides an application-oriented assessment of the fidelity of the

quantum device. Our results provide a direction for noise miti-
gation but also suggest how to use noise for quantum simulations
of open systems8,34–41.

Results
Stationary-state evolution with noise. Time evolution of a sta-
tionary state prepared on a noisy quantum computer can be
described by the equation of motion of the density matrix
D according to the Nakajima–Zwanzig integro-differential
equation11,13,42

dD
dt

¼ � i
_
½Ĥ;D� þ

Z t

0
Kðt; τÞDðt; τÞdτ; ð1Þ

where Ĥ is the Hamiltonian operator of the stationary state and
Kðt; τÞ is the memory kernel representing the quantum com-
puter’s noise. The memory kernel as represented here also
includes the contribution of memoryless (i.e., Markovian) noise
effects, which can be represented by a Dirac delta function at t in
the kernel. In the limit that the noise on the quantum computer
vanishes, the memory kernel vanishes and the equation sim-
plifies to the quantum Liouville (von Neumann) equation. If the
initial state is a stationary state of Ĥ, all of the non-trivial time
dependence results from the noise. Normal noise spectroscopy
or characterization of a system could be performed by using a
number of techniques, such as with Rabi spectroscopy, swap
spectroscopy, or with a tunable system43–51. Here, to probe the
frequency dependence of the noise, we consider the family of
scaled Hamiltonians Ĥ ¼ _ωÔ where Ô is a dimensionless
operator. By changing ω, we can control the energy difference
between the ground and the first excited state of the simulated
system. The time-dependent response of the system to different
values of ω provides us with spectral information about the
noise on the quantum computer. From one perspective we are
attempting to simulate the solution of the quantum Liouville
equation on the quantum computer with the memory kernel set
to zero. Consequently, all deviations from the closed-system
evolution are originating from the noise of the given quantum
computer which creates without our direction an effective
memory kernel for the time evolution (including memoryless
effects).

Single-qubit Hamiltonians. We begin with a single-qubit system
with the Hamiltonian matrix H(ω)= ωσz where we use atomic
units with ℏ= 1, and σz is the Pauli-Z matrix,

σz ¼
1 0

0 �1

� �
: ð2Þ

We prepare the system in the excited state jψi ¼ 1j i and evolve
the system according to exp½�iHτ� ¼ Rzð2ωτÞ, using repeated
single-qubit gates with the results shown in Fig. 1. The time step
is arbitrary to the extent that it can be rescaled with the strength
of the Hamiltonian (in this case, ω), and hence, we set τ ¼ 1

3,
which serves to highlight system-bath interactions when the
frequency ω∈ [0, 1]. If we allowed the system to relax without
applying any gates, this would essentially be a T1 experiment
(where we could use the physical gate times), measuring the
relaxation time for an excited state. However, the noise sources
here, represented by the non-vanishing memory kernel, generate
non-Markovian behavior. In Fig. 1, the non-Markovian behavior
can be seen from the oscillations in the population of the ground
state, which reveal a memory dependence beyond the pure
decay of Markovian dynamics. Furthermore, the oscillations are
more pronounced at lower frequencies, indicating a bath with
colored noise.
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The spectral density with respect to a quantum noise source A
can be characterized as49:

SAðωÞ ¼
Z 1

�1
dτ exp½iωτ�∑

αβ
ρααhαjAðτÞjβihβjAð0Þjαi

¼ 2π ∑
α;β

ρααjAαβj2δðϵβ � ϵα � ωÞ;
ð3Þ

where α and β are energy eigenstates of H and ρ represents the
density matrix. The spectral density can be related to the rate of
population change through first-order perturbation theory with
the well-known Fermi’s golden rule12,49,52. Figure 2 is constructed
from Fig. 1, showing the rate of change in the initial part of the
time evolution as a function of frequency, which provides a rough
spectrum of the noise on the quantum computer from the
perspective of the simulated system. Note that for frequencies
above 0.6 (relative to a value of τ= 1/3), the noise profile shows
low-intensity signals, likely from thermal noise. The appropriate
resolution is difficult to determine, and the wells are not
stochastic, as a purely stochastic phenomenon would not be

continuous along the time series since each time in the series is
sampled independently.

The significant portion of the noise can be ascribed to a
transverse noise source (described by the Pauli-X or -Y matrices)
which allows for transitions between the ground and excited
states. The quantum devices we studied utilize a sequence of
elementary gates denoted as U1, U2, and U3 gates. In particular,
these gates consist of alternating frame changes (Rz gates) and
rotations (X90 rotation, Rx gates), where Uk contains k frame
changes and k− 1 transverse rotations (in the current iteration of
IBM systems, these gates are represented with a series of
intertwined Rz and

ffiffiffiffi
X

p
gates, which can also be used in a

similar manner to represent generic single-qubit unitary trans-
formations). If only the U1 gate is used to model exp½�iωσzτ�,
then a pulse is not applied, and the gate applications correspond
to a standard T1 experiment, measuring the relaxation of the
excited state. However, here we specifically use U3 gates, which
are generic single-qubit rotations, and which alternate between
transverse and longitudinal rotations. In fact, one way to model
similar behavior in the qubit system is to apply a constant
exp½iθσx�, where θ is taken to be a small angle, following every
gate application. However, this does not account for the troughs
seen within the range from 0.03 to 0.3. Whether or not the noise
channels are a result of an improper calibration of the X90 gate
resulting in a systematic overrotation, or are part of a completely
different noise source, becomes irrelevant for the noisy system in
that the quantum system could be equivalently described from
either perspective45,53. For a user or algorithm that does not
control the qubit and gate level of the simulation, we posit that
the effects of the two are the same, and the quantum system could
be viewed as experiencing the same.

In addition to using different devices, we also can highlight
system-specific responses on a single device by choosing different
qubits to simulate our system. We demonstrate this in Fig. 3. In
Fig. 3a, b, c, d, it appears that only one or two frequencies in the

Fig. 1 Frequency scan of simulated time evolution for a single qubit. Scan
of population of the 0j i state (n0) as a function of simulated time t and
frequency ω on the ibmq_armonk device. We initially prepare the 1j i state
and then apply 100 total gate sequences of exp½�iτH�, where the time
step is τ ¼ 1

3, the system Hamiltonian is H= ωσz, ω ∈ (0, 0.6), and σz is
defined in Eq. (2). The time t is equal to the number of gates times τ
multiplied by the scaling factor 0.015. The oscillatory behavior reveals
non-Markovian effects with the oscillations becoming less pronounced at
higher frequencies.

Fig. 2 Rate of population change with respect to simulated time for
different frequencies with a single-qubit system. Approximate rate of
ground-state populations changes d

dt n0 as a function of frequency ω
evaluated after the first time step, which is proportional to the spectral
density. The data is taken from the scan in Fig. 1 from ibmq_armonk.

Fig. 3 Demonstration of simulated time evolution for different devices
and qubits. Ground-state populations n0 obtained from simulated time
evolution with different devices and qubits (indicated by the ith qubit Qi).
Systems were initialized in the 1j i state and evolved for time t with
Hamiltonian H=ωσz. The frequency is given by ω, time step τ ¼ 1

3, and σz
defined in Eq. (2). a Q2, ibmq_belem. b–d Q0, Q2, Q4, ibmq_bogota. e Q0,
ibmq_armonk. f–h Q0, Q2, Q4, ibmq_casablanca. Legend shows
frequencies ranging from ω= 0 (blue, shortest dashes) to ω= 0.5 (green,
longest dashes).
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simulated evolution show a frequency-dependent response, which
in some instances appears to be Markovian. However, for others,
like in Fig. 3e, f, g, h we see strong non-Markovian behavior at
numerous frequencies. The highest frequencies in each case
appear to exhibit simple exponential decay, and so can be taken
as an indicator of the simulated relaxation time. Note that a strict
comparison cannot be made between the simulated relaxation
time and the qubit performance characteristics. For single qubit
with high-fidelity gates, we might expect the T1 time to mirror the
simulated relaxation rate (see Supplementary Note I for an
explicit comparison). In practice, however, gate errors obfuscate
the comparison by contributing to the simulated relaxation rates.
Also, the evolution by gate applications introduces energy into
the system, which causes the system to relax into a mixed
ensemble state rather than the ground state.

We can also observe how the quantum state vector moves in
the Bloch sphere at different frequencies. For frequencies in the
high region of the spectral density and not allowing for coupling
between the bath and system, a slow precession around the axis
corresponding to H is observed. However, for frequencies which
couple to the bath, the system can be strongly pulled around the
Bloch sphere resulting in various trajectories through the state
space. We model some of the trajectories in Fig. 4, and instances
with other Hamiltonians are included in Supplementary Note I.

Two-qubit Hamiltonians. By identifying frequencies of interest
on the qubits themselves, we can construct systems which
respond uniquely to the bath, allowing for selective transitions
between different eigenstates of the system. With this in mind, we
first simulate a two-qubit system with a local Hamiltonian
defined by:

Hðω1;ω2Þ ¼ ω1σ
1
z þ ω2σ

2
z : ð4Þ

where σ jz refers to the Pauli-Z matrix in Eq. (2) acting on the jth
qubit. This Hamiltonian has the computational basis as its energy
eigenbasis, and it can be shown that changing a frequency ωi can
lead to a small energy transition between states differing locally
on qubit i. By scanning over single-qubit frequencies, we can
obtain a simple noise profile, and then choose appropriate ωi to
influence the system. Using these frequencies, we highlight four
different cases in Fig. 5a, b, c, d, showing interacting and non-
interacting frequencies for each qubit. In addition, we present the
calculated transition rates for each population in Table 1.

The system here demonstrates asymmetry between the two qubits,
with stronger coupling present on the second qubit. For large ω1 and
ω2, which do not strongly couple the bath and qubit system, we
witness a region of linear decay toward a uniformly depolarized state.
For smaller ω1 and ω2, we clearly have a very dynamic system,
allowing for transitions amongst all four states.

We can expand this idea naturally to look at a potentially non-
local Hamiltonian, namely:

Hðω1;ω2;ω3Þ ¼ ω1σ
1
z þ ω2σ

2
z þ ω3σ

1
zσ

2
z : ð5Þ

The time propagator for this step is still relatively simple, as all
elements commute and there is no Trotterization error. In
addition, the eigenstates correspond to elements of the computa-
tional basis. Practically, the propagator requires only 2 CNOT
gates with a sequence of exponential Z rotations. If we consider

Fig. 4 Single-qubit state trajectories with respect to simulated time for a
range of frequencies. Scan of several trajectories represented in the Bloch
sphere for a single-qubit device for a range of frequencies ω∈ [0.05, 0.15]
in increments of 0.01, from ibmq_armonk. σi represents the expectation
with respect to that operator as a function of time. Each simulation has an
equal number of gate applications and changes only the frequency ω in the
propagation with time step τ, exp½�iτH� ¼ exp½�i ωσz3 �. ω decreases from
red (ω= 0.05) to green (ω= 0.10) to blue (ω= 0.15).

Fig. 5 Simulated time evolution of a two-qubit local system which
demonstrates state transitions on local sites. Populations nij where
i, j∈ {0, 1}, referring to the eigenstates of the two-qubit system undergoing
simulated evolution for time t with time step τ= 1/3 prepared on
ibmq_rome. The system Hamiltonian can be described with two
frequencies: Hðω1;ω2Þ ¼ ω1σ

1
z þ ω2σ

2
z where σ iz on qubit i is given by Eq.

(2). The different plots describe permutations of two different values of ω1

and ω2. a 1
20 ;

1
20

� �
; b 1

20 ;
1
2

� �
; c 1

2 ;
1
20

� �
; d 1

2 ;
1
2

� �
. Note that the bath is not

symmetric with respect to the swapping of the qubits, as there is a stronger
interaction of the bath with the second qubit relative to the first qubit. The
populations are represented as n00: ○ (blue), n01: △ (green), n10: ×
(purple), and n11: + (cyan).

Table 1 Rate of population change for different frequencies
for the local two-qubit Hamiltonian.

d
dt nij ð ´ 10�3Þ

ω1 ω2 n00 n01 n10 n11
1
20

1
20 −16.4 12.4 2.5 1.5

1
20

1
2 −4.7 0.5 4.1 0.2

1
2

1
20 −13.7 13.5 0.0 0.2

1
2

1
2 −1.1 0.7 0.4 0.0

Rate of population change for eigenstates nij, where ij are indices (corresponding to the
computational basis), immediately after initialization for the two-qubit system depicted in Fig. 5,
where H ¼ σ1zω1 þ σ2zω2, time step τ ¼ 1

3 and σ iz on qubit i is given by Eq. (2). The rate was
averaged over 15 time steps. The strongest bath interaction is related to a small frequency ω1,
which when isolated or in conjunction with ω2 has strong enough coupling to induce state
transitions. The only significant increase in the n11 state occurs when a low transition frequency
is available for both qubits. In addition, these rates are substantially lower than what is observed
in the single-qubit system, which corresponds with the better gate fidelities for this system (see
Supplementary Note II).
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the eigenstate state with density matrix ρ0 ¼ 11j i 11h j, we can
elucidate information on the eigenstates and relative differences
between states. Given the Hamiltonian above, we can describe
state-to-state transitions with energy gaps given by:

ϵ00 � ϵ11 ¼ 2ðω1 þ ω2Þ ð6Þ

ϵ01 � ϵ11 ¼ 2ðω1 � ω3Þ ð7Þ

ϵ10 � ϵ11 ¼ 2ðω2 � ω3Þ: ð8Þ
For local Hamiltonians, transitions from the 11j i state are
predominantly induced by local transitions (ϵ00− ϵ11 for Eq. (4)
is ω1+ ω2, and so if ω1 and ω2 are small we can induce other
transitions simultaneously). For this correlated Hamiltonian we
can independently control energy levels, and thus have more
control over the available transitions. However, we also know that
noise from multi-qubit gates will be stronger, resulting in a
quicker decay process. Figure 6 shows simulated evolution for two
sets of frequencies demonstrating different potential behaviors
which the system exhibits in response to the bath. The evolution
here involves 144 time steps, or 288 CNOT gates, which can be
seen to eventually lead to a fully mixed state where each
population is ~1/4. In Fig. 6a, we choose frequencies that do not
demonstrate a particular bath response, i.e., a large ω3, ω1, and ω2.
As a result the system displays exponential decay. In Fig. 6b, we
choose a large ω3 with small values of ω1 and ω2, which in
principle allows for a correlated transition from the 11j i
eigenstate to the 00j i eigenstate. Despite the presence of a
stronger bath, we still see a transition between these eigenstates.
When comparing the simulations in Fig. 6a and b, the 00j i and
11j i populations differ along the simulated trajectory by 0.13 and
0.12, respectively, whereas the 01j i and 10j i populations differ by
only 0.028 and 0.023, respectively. Thus, we demonstrate that we
can characterize the unique system-bath behavior of a correlated
simulated quantum system.

Conclusions. By characterizing noise properties of the system, we
may be able to design better error mitigation techniques or
approaches to the simulation of open quantum systems where the
quantum computer’s noise is harnessed as an effective bath32. For
example, examining the spectral profile of the bath from the
simulation of stationary quantum states may provide a unique
spectroscopic fingerprint of the quantum computer. With such a
fingerprint we may be able to design simulation algorithms that
account for this fingerprint, providing a potentially elegant
approach to error mitigation for real-world applications. Fur-
thermore, there may be certain scenarios such as open-quantum-
system simulation where the presence of noise may be a beneficial
quantum resource. This idea was recently demonstrated for qubit-
like spin radical systems with the decoherence of qubits being
utilized33. To model an open-quantum system, we may be able to
use the quantum computer’s noise to represent a significant part
of the model’s bath. Use of the quantum computer’s inherent
noise could potentially permit the simulation of an open quan-
tum system at a significantly reduced computational cost in terms
of both gate and qubit resources. The present approach also
provides insights into controlling noise relative to a simulated
timescale. Similar to extrapolation schemes for error mitigation54,
we could use knowledge of the bath interaction to manipulate the
noise strength as a function of the propagation step in time.

In addition, although noise sources in driven evolution cannot
typically be attributed to singular sources, the absence of such
specificity is not necessarily an issue for practical quantum
computing. As mentioned above, characterizing whether the
transverse signal is a systematic overrotation or an errant noise
source is critical in calibration but not so important for system
applications. For a complex quantum simulation, the effects of a
single source of error (unless uniquely distinct) cannot be easily
distinguished amidst the entire chorus of noise sources. From the
complex set of instructions on a quantum computer emerges a
complex noise profile, which is manifest in the difficulty of
simulating multi-qubit noise phenomena. Through a simulated
system-specific approach, we can utilize the effective bath’s
spectroscopic information to design more device-specific techni-
ques and algorithms that could improve future applications.

In this work, we simulate the time evolution of arbitrary
stationary quantum states on a noisy quantum computer through
the application of the time evolution operator. Noise causes a
system-specific response which exhibits Markovian and non-
Markovian behaviors for certain frequency domains. Spectro-
scopic analysis of this time evolution provides a frequency
spectrum—a spectroscopic fingerprint—of the noise of the
effective bath induced by the quantum computer. Understanding
the noise profile may allow us to create parameterized systems in
which we influence state transitions with the quantum device
serving as a non-Markovian bath. The characterization of the
bath is shown to be robust through simulations on multiple IBM
superconducting-qubit quantum computers with different qubit
numbers, connectivities, and fidelities. Although the present work
employs superconducting-qubit quantum computers, in future
work we plan to use this approach to characterize the noise on
other types of quantum computers such as ion-trap quantum
devices. These ideas provide a further step toward harnessing the
unique quantum noise profile which emerges from the perspec-
tive of a simulated system on a quantum computer, that could be
utilized in approaches for error mitigation and the simulation of
open quantum systems.

Methods
In each simulation we use atomic units, and the time steps are relative to mean-
ingful scales on the quantum device. While we could associate the results to a
physical time through the known gate lengths, we focus on presenting the time

Fig. 6 Demonstration of a 11j i ! 00j i eigenstate transition in the
simulated time evolution of a correlated two-qubit system. Simulated
evolution for time t on ibmq_bogota where the time step τ= 1/3, and the
Hamiltonian is composed of three variable frequencies ωi, Ĥ ¼ ω1σ

1
z þ

ω2σ
2
z þ ω3σ

1
zσ

2
z , where σ iz acting on qubit i is given by Eq. (2). a Using ω3= 1,

and ω1; ω2 ¼ 1
2, the system demonstrates expected exponential decay to the

thermally mixed state. b With ω3= 1 and frequencies, ω1 ¼ 1
10 and ω2 ¼ � 1

20,
despite the quick decay we see a correlated two-qubit transition between the
11j i and 00j i eigenstates where the other populations match the decay seen in
(a). The dotted grey line represents the ideal fully mixed population for each
eigenstate nij ¼ 1

4. The simulated populations are represented as n00:○ (blue),
n01: △ (green), n10: × (purple), and n11: + (cyan).
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evolution from the perspective of the simulated system, which can have arbitrary
energies and time values, and which ultimately is beholden to the gate errors. As
mentioned in the text, the system Hamiltonian has a single qubit or in the two-
qubit system, a sum of two-single-qubit gates, both of which can be implemented
as exact exponentials. These are implemented with U3 gates on the quantum
computer, which have the form:

U3ðθ; ϕ; λÞ ¼ RzðϕÞRx � π

2

� �
RzðθÞRx

π

2

� �
RzðλÞ ð9Þ

¼ cos θ
2

� � �eiλ sin θ
2

� �
eiϕ sin θ

2

� �
eiðϕþλÞ cos θ

2

� �
 !

: ð10Þ

In preparing the manuscript, the user-input basis gate sequence for the ibmq
devices was updated, so that now the U3 transformation is implemented as a series
of 3 Rz gates interleaved with

ffiffiffiffi
X

p
gates (using the identity Rxðπ2Þ ¼ e�

iπ
4

ffiffiffiffi
X

p
). The

correlated two-qubit example requires 2 CNOT gates in addition to the U3

sequences.
Each circuit (representing a particular time point) is prepared by evolving in

time according to the given time step, and then measuring the particular step 213

times. Sampling errors throughout are smaller than the depicted markers. The
simulations use cloud-available quantum devices accessible through IBM Quantum
Experience. The particular results reported here are performed on ibmq_armonk,
ibmq_rome, ibmq_belek, ibmq_casablanca, and ibmq_bogota. The devices use
fixed-frequency transmon qubits with co-planer waveguide resonators55,56. We use
the Python package Qiskit (v0.17.0)57 to interface with the device. Specific device
properties relevant to each run can be found in Supplementary Note II.

Data availability
The data generated during the current study are available from the corresponding author
on reasonable request.

Code availability
Code will be made available on a public Github repository upon publication.
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